skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "O’Neil, Kelly K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The eccentricity of a substellar companion is an important tracer of its formation history. Directly imaged companions often present poorly constrained eccentricities. A recently developed prior framework for orbit fitting called “observable-based priors” has the advantage of improving biases in derived orbit parameters for objects with minimal phase coverage, which is the case for the majority of directly imaged companions. We use observable-based priors to fit the orbits of 21 exoplanets and brown dwarfs in an effort to obtain the eccentricity distributions with minimized biases. We present the objects’ individual posteriors compared to their previously derived distributions, showing in many cases a shift toward lower eccentricities. We analyze the companions’ eccentricity distribution at a population level, and compare this to the distributions obtained with the traditional uniform priors. We fit a Beta distribution to our posteriors using observable-based priors, obtaining shape parametersα= 1.09 0.22 + 0.30 andβ= 1.42 0.25 + 0.33 . This represents an approximately flat distribution of eccentricities. The derivedαandβparameters are consistent with the values obtained using uniform priors, though uniform priors lead to a tail at high eccentricities. We find that separating the population into high- and low-mass companions yields different distributions depending on the classification of intermediate-mass objects. We also determine via simulation that the minimal orbit coverage needed to give meaningful posteriors under the assumptions made for directly imaged planets is ≈15% of the inferred period of the orbit. 
    more » « less
  2. Abstract The 1RXS J034231.8+121622 system consists of an M dwarf primary and a directly imaged low-mass stellar companion. We use high-resolution spectroscopic data from Keck/KPIC to estimate the objects' atmospheric parameters and radial velocities (RVs). Using PHOENIX stellar models, we find that the primary has a temperature of 3460 ± 50 K and a metallicity of 0.16 ± 0.04, while the secondary has a temperature of 2510 ± 50 K and a metallicity of 0.13 0.11 + 0.12 . Recent work suggests this system is associated with the Hyades, giving it an older age than previous estimates. Both metallicities agree with current Hyades [Fe/H] measurements (0.11–0.21). Using stellar evolutionary models, we obtain significantly higher masses for the objects, 0.30 ± 0.15Mand 0.08 ± 0.01M(84 ± 11MJup), respectively. Using the RVs and a new astrometry point from Keck/NIRC2, we find that the system is likely an edge-on, moderately eccentric ( 0.41 0.08 + 0.27 ) configuration. We also estimate the C/O ratio of both objects using custom grid models, obtaining 0.42 ± 0.10 (primary) and 0.55 ± 0.10 (companion). From these results, we confirm that this system most likely went through a binary star formation process in the Hyades. The significant changes in this system's parameters since its discovery highlight the importance of high-resolution spectroscopy for both orbital and atmospheric characterization of directly imaged companions. 
    more » « less